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ABSTRACT

Vf The Flexible Spacecraft Simulator (FSS) at the Naval Postgraduate School

was modified by replacing the flexible appendage with a two link robotic

manipulator. This experimental setup was designed to simulate motion of a

spacecraft about the pitch axis. The spacecraft consists of a main body, a two

link manipulator, and momentum wheel actuator to control the pitch attitude of

the spacecraft. Position information from the main body and manipulators was

obtained from Rotary Variable Displacement Transducers (RVDT). The equations

of motion were developed assuming that the main body and manipulator were

rigid bodies. The resulting coupled, nonlinear, time invariant equations of motion

were used to analyze the dynamics and kinematics of the main body and

manipulator as well as the interaction between the main body and manipulator.

Three different control strategies were developed using Lyapunov's Second

or Direct Method. With the first controller, simple linear feedback of position and

velocity information with constant gains was used to position the manipulator

and stabilize the main body. A fifth order polynomial was used to generate a

reference trajectory for the second controller. This trajectory was used in

conjunction with a tracking controller to position and stabilize the system. In the

third controller, a near-minimum-time technique was used to generate a reference

trajectory. This reference trajectory was employed using a tracking controller

similar to that used in the polynomial reference controller. .Aceeo_ .g For

Im ,7C TED8 2___
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I. INTRODUCTION

During the past few years there has been a significant increase in the use of

robotics. Applications range from performing routine tasks in manufacturing to

deep sea and interplanetary space exploration. The interplanetary and

extraterrestrial environment has become the focus of research for future indastrial

development and scientific exploration. With the hazards of this environment

and cost of manned space flight, researche.s will become increasingly dependent

upon robotics for assembly, service, and repair of equipment in space as well as

the exploration of space itself. Due to the requirements for terrestrial and space

applications, there has been a significant increase in theoretical and experimental

research in the areas of robotic dynamics and control.

Space based robotic applications differ from terrestrial applications in one

important area. For the space based applications, no support is provided to

stabilize the manipulator. A space based manipulator, when repositioned, imparts

moments and forces on the spacecraft. In addition, there is no friction to dissipate

energy that is added to the system. To counteract these forces and moments, an

attitude control system normally consisting of thrusters in combination with a

momentum wheel is used to stabilize the spacecraft. Control system problems are

exasperated as the mass of the load that is being positioned becomes larger in

relation to the mass of the spacecraft. It is this interaction between spacecraft and

the motion of a manipulator that warrants further research.

The primary objective for any control system is to remain stable over a wide

range of operating conditions while still providing adequate levels of

performance. It is desired to meet this objective in the face of hardware
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characteristics, changing loads as well as unmodeled disturbances and system

dynamics. These requirements and restrictions present the control system design

engineer with significant challenges.

Before the system can be analyzed, the equations of motions must be

determined. The equations of motion for a robotic system can easily be developed

through Lagrange's equations and are in the form of a set of second order

differential equations. These equations are coupled and nonlinear with

trigonometric and higher order terms. Attempts to simplify these equations result

in equations of motion that are valid over a limited range of motion or for specific

boundary conditions. The current trend in trajectory control requires highly

nonlinear maneuvers that are valid over a wide range of applications and

operating conditions. These requirements dictate that the full, nonlinear

equations be used to describe the motion of the system. With the introduction of

the nonlinear equations of motion, many traditional tools in control theory used

to analyze linear, time-invariant systems are not available or are meaningless.

Recently, research by Junkins [Ref. 1] and Bang [Ref. 2] has revived interest

in using Lyapunov's second method for a flexible structure control system design.

This technique is very attractive because it can be applied to nonlinear, time

invariant, systems with guaranteed stability for a wide range of conditions. An

important feature of Lyapunov's second method is the freedom to select the

Lyapunov function and the corresponding feedback control law. The Lyapunov

function can be seleated based on physical insight and the control law can be

selected to ensure that the system is stable. The Lyapunov function must be

positive definite and is normally related to the system energy for a large class of

mechanical natural systems. The control law can be selected such that the
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Lyapunov function or system energy will always decrease to zero or some

equilibrium point.

The purpose of this thesis is to apply a general methodology for finding

Lyapunov stable control laws for stabilizing the spacecraft main body while

controlling a two link manipulator attached to that spacecraft. A complete

description of the experimental setup is discussed in Chapter II. Topics include

the physical characteristics of the manipulator, main body, actuators, sensors, test,

simulation, and data collection equipment. In Chapter III, the coordinate systems

and the equations of motion are developed. Three different control strategies

were developed using Lyapunov's Second or Direct Method. With the first

controller, simple linear feedback of position and velocity information with

constant gains was used to position the manipulator while stabilizing the main

body. A fifth order polynomial was used to generate a reference trajectory for the

second controller. This trajectory was used in conjunction with a tracking

controller to position and stabilize the system. In the third controller, a near-

minimum-time technique was used to generate a reference trajectory. This

reference trajectory was employed with a tracking controller similar to that used

in the polynomial reference controller. Simulation results are presented in

Chapter IV. Chapter V includes a summary of the conclusions as well as topics

for future research.
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II. EXPERIMENTAL SETUP

A. SPACE ROBOTICS SIMULATOR DESCRIPTION

The Spacecraft Robotics Simulator (SRS) is a modification to the Flexible

Spacecraft Simulator (FSS) used for previous work by Hailey [Ref. 3], and

Watkins [Ref. 4]. The FSS was modified by removing the flexible appendage

and replacing this appendage with a two link manipulator. The SRS consists of a

central main body with a two link robotic manipulator. Pitch axis control of the

main body is provided by a single momentum wheel driven by an electric servo-

motor. The central body was constrained to rotational motion only by an I-beam

mounted over the over the granite table. The main body and manipulator were

supported by air bearings that float upon a thin cushion of air on an optical

quality granite surface. Each of the two links were positioned via geared DC

servo-motors. A Rotary Variable Displacement Transducer (RVDT) was used to

obtain position information at each joint for position feedback. This setup was

designed to simulate a zero-gravity environment in two dimensions. The SRS is

depicted in Figure 2.1.

B. EXPERIMENT DESCRIPTION

The SRS is composed of the following major components:

* Spacecraft Main Body
* Two Link Robotic Manipulator
* RVDT Position Sensors

* Granite Table
* Electrical Power Supplies
* AC-100
* VAX 3100 Series Computer
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Figure 2.1 Spacecraft Robotics Simulator

1. Spacecraft Main Body

The spacecraft main body consists of a rigid, 7/8 inch thick, 30 inch

diameter, aluminum disk. The main body is designed to simulate the two

dimensional planar motion of a spacecraft about its pitch axis. The main body is

supported by three air bearings spaced at 120 degree intervals. Each of the

bearings is capable of supporting a load of 60 pounds. A fourth air bearing

supported by an overhead I-beam constrains the spacecraft main body to

rotational motion only. The air bearings are designed to float the spacecraft main

body on a thin film of air supplied by an external air source. A RVDT, model

R30D, was connected to the rotor of the air bearing by a bellow-type device.
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The RVDT was manufactured by Schaevitz Sensing Systems was used to measure

angular displacements of the spacecraft main body.

Attached to the spacecraft main body was a 10.7 kilogram steel

momentum wheel and servo motor. The momentum wheel was designed to apply

a torque to the main body by increasing or decreasing the angular velocity of the

momentum wheel. The motion of the spacecraft about its pitch axis was

controlled by the torque generated by this momentum wheel. The servo motor,

model JR16M4CH/F9T used to drive the momentum wheel was manufactured by

PMI industries. Characteristics of this motor are presented in Table 2.1.

TABLE 2.1 Momentum Wheel Actuator Characteristics

Characteristic Units

Manufacturer PMI Motion Technologies

Model Number JR 16M4CH- 1

Rated Speed rev per minute 3000

Rated Power horse power 1.4

Rated Torque inch-pound 31.85

Rated Current amps 7.79

Rated Voltage volts 168

Outside Diameter inches 7.4

Height inches 4.5

Weight pounds 17.5

An integral analog tachometer, model ARS-C121-1A, manufactured by Watson

Industries, Inc. was mounted on the servo-motor to measure angular velocity.
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A more detailed description of the motor, momentum wheel, and spacecraft main

body can be found in [Ref. 3], and [Ref. 4].

2. Two Link Manipulator

Attached to the main body was a two link manipulator. Components for

the manipulator were designed and built by the Aeronautics and Astronautics

Department at the Naval Postgraduate School. All components for the arm were

manufactured from 7075 and 6061 series aluminum. All components were

connected with SAE grade 8 medium carbon chrome alloy cap screws. A picture

of the manipulator can be found in Figure 2.2.

Figure 2.2 Two Link Manipulator
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The links of the manipulator were positioned by two geared, servo-disk motors

manufactured by PMI. A third motor, identical to the first two actuators and was

mounted on the tip of link two for the purpose of orienting a simulated tool or

pointing some type of antenna. Characteristics for the link actuators are

presented in Table 2.2. At each joint, a RVDT, model R30D, manufactured by

Schaevitz was used to measure relative angular displacement.

TABLE 2.2 Link Actuator Characteristics

Characteristic Units

Manufacturer PMI Motion Technologies

Model Number 9FGHD

Rated Speed rev per minute 22

Rated Torque inch-pound 80

Rated Current amps 5.6

Rated Voltage volts 12

Outside Diameter inches 4.75

Height inches 3

Weight pounds 3.2

The power supplies used to drive the actuators of the manipulators were

manufactured by Kepco Inc. of Flushing, New York. The Kepco series BOP

Bipolar Power Supplies were designed to be fast, programmable, fully dissipative,

linear amplifiers. The BOP power supply is an all solid-state design, featuring

integrated circuit operational amplifiers in the control circuit section and silicon

power transistors mounted on special fan-cooled heat sinks in the complementary
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power stage. Characteristics for the Kepco model BOP 20-10 power supply are

presented in Table 2.3.

TABLE 2.3 Ke pco Power Supply Characteristics

Output Power watts 200

Max. Input Current amps 5.5

Max. Input Power watts 540

DC. Output Range volts +20

amps + 10

Closed Loop Gain volts/volt 2

amps/volt 1

Bandwidth kilohertz 18 (voltage mode)

kilohertz 6 (current mode)

Rise Time microseconds 20 (voltage mode)

microseconds 60 (current mode)

Recovery Step Load microseconds 80 (voltage mode)

microseconds 20 (current mode)

The BOP can be operated in either the voltage or current mode through two

bipolar control channels. These modes are manually selectable through the front

control panel or through remote signals. Each of the principal control channels is

protected by bipolar limit circuits. All control and limit channels are connected to

the output stage via an "Exclusive-Or" gate so that only one channel is in control

of the BOP output at any one time. The BOP output can be programmed over its

full output range by a +10 volt signal applied to either one of the inputs to the
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voltage or current channel. The limit control channels can be remotely controlled

by a 0 to +10 volt signal applied to there respective inputs.

3. Granite Table

The entire mechanical assemblage, including the main body and

manipulator were supported by air bearings that float on a thin cushion of air on a

granite table with dimensions of 8 feet by 6 feet by 10.5 inches thick. The surface

of the table was highly polished to optical quality grade A (0.001 inch peak to

valley). The smooth surface allows the air bearings to float freely over the surface

of the granite table to minimize the effects of friction on the motion of the main

body and manipulator. The granite table was carefully leveled to eliminate

gravity induced accelerations. The mass of the table provided an extremely stable

platform upon which to conduct the experiments.

4. AC- 100

The AC-100 is a microprocessor based, programmable, real time control

system manufactured by Integrated Systems International, Inc. of San Jose,

California. The AC-100 was designed to automate the development of real-time

systems by combining graphical modeling tools with a real-time controller. In

addition to modeling and controlling, the AC-100 was also capable of data

collection and storage. The AC-100 consists of the following major components:

Intel 80386 Application Processor, Intel 80386 Multibus II Input / Output

Processor, Intel 80386 Communication Processor, Intel 80387 Coprocessor,

Weitek 3167 Coprocessor, Analog To Digital and Digital To Analog Digital Data

Translation DT2402 Input/ Output Board, Two - INX-04 Encoder and Digital To

Analog Servo Boards, Ethernet Interface Module, and Cabinet Enclosure and

Power Supply
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The software tools used with the AC-100 include a Design Package and

a Run-Time Package. The Design Package included Matrixx, System Build, and

Auto Code. These tools are used for analysis, design, and code generation

respectively. The Run-Time Software Package provides the Graphical User

Interface (GUI) cross compiler, device drivers, data acquisition, and Ethernet

interface required to run software code generated by Auto Code on the AC-I100.

5. VAX 3100 Series Computer

The VAX 3100 Series Model 30 workstation was configured with 8

megabytes of main memory, a 19 inch (diagonal) color monitor, two 104 megabyte

Winchester hard disks and a mouse. The VAX workstation is capable of 2.8

Million Instructions Per Second (MIPS).

C. SYSTEM INTEGRATION

The AC-100 is integrated with a VAX 3100 Series computer via the Ethernet

interface. In this system, the VAX 3100 computer was used to analyze and design

the control system. Auto Code was then used to convert the final control system

design into fully compiled and linked "C" computer code. This code was then

down linked to the AC-100 via the Ethernet interface. The control system, in the

form of C - code software can then be used to control the servo-amplifiers which

in turn were used to drive the actuators of the manipulator in real time. Manual

control of the system is still provided through the VAX computer acting through

the Ethernet interface. A block diagram of the integration of the control system

for the two link manipulator and spacecraft main body are presented in Figure

2.3. Mass and inertia characteristics are summarized in Table 2.4
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Figure 2.3 Control System Integration
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TABLE 2.4 Mass And Inertia Characteristics

Body Characteristic Units Value

Ann 1 Mass kg 2.09

Inertia (1) kg-mr2  0.3102

Inertia (2) kg-mr2  0.032

Center Of Mass(3) cm 36.45

Arm 2 Mass kg 2.47

Inertia (1) kg-mr2  0.3542

Inertia (2) kg-m2  0.054

Center Of Mass(3) cm 34.90

Main Body Mass kg 52.73

Inertia (1) kg-m 2  0.3542

Momentum Wheel Mass kg 10.67

Inertia (1) kg-mr2  0.0912

Center Of Mass cm 20
Notes: (1) Moment Of Inertia About Arm Axis Of Rotation.

(2) Moment Of Inertia About Center Of Mass.
(3) Center Of Mass Location With Respect To Axis Of Rotation.
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III. ANALYTICAL MODEL

The Spacecraft Robotics Simulator (SRS) consists of a central main body to

which is attached a two link robotic manipulator. The motion of the main body is

constrained to move in a plane resulting in a system with three degrees of

freedom. This planar motion constraint greatly simplifies the problems associated

with the derivation of the equation of motion and control system design yet still

retains the most critical analytical elements. The manipulator and main body were

modeled as rigid structures. Lagrange's equation was used to derive the

equations of motion. This section will first describe how the equations of motion

were derived and then how the control system was developed.

A. COORDINATE SYSTEMS

Before the spacecraft attitude and manipulator can be controlled the

dynamics of the system must be carefully defined and understood. The first step

in this process, is to determine the equations of motion for the system.

In this model, the main body is constrained to rotational motion only. Four

different coordinate systems were used for this analysis. The N1, N2, N3 axis for

this problem was fixed in inertial space coincident with the axis of rotation of the

main body. The coordinate system, Xl, yI, zi, is fixed in the main body with the

xi axis pointing toward the attachment point for link 1. The xj, yl, zl coordinate

system is obtained by rotating about the N3 axis of the inertial coordinate, by an

angle of 01 . In a similar way, the coordinate systems, x2, Y2, z2, is fixed at the

axis of rotation of link 1 and points toward the attachment point for link 2. The

X2, yz, Z2 coordinate system can be obtain by rotating about the N.1 axis of the
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inertial coordinate system by an angle of 02. The coordinate system, X3, Y3, Z3, is

fixed in the body of link 2 with the X3 axis pointing toward the end point of link

2. This coordinate system is obtained by rotating by an angle, 03 about the N3

axis of the inertial system. Coordinate systems are presented in Figure 3 1.

0 Servo Motor

' ) Manipulator Ann

Local Coordinate Axis

Link 2

Inertial Axisa
X3

NY3

N2

Z3

Link I

Y15

MomentumQ -•Y2 2

Wheel -1 1

StlieMain Body

Figure 3.1 Inertial And Local Coordinate Systems

All angles, 01, 02, and 03, as well as vectors r 1, rF2, and r-3 are defined in terms

of inertial coordinates where these quantities are defined in Fig-,r-e 3.1

15



Center Of Mass

o Servo Motor

. Manipulator Ann cimm3 Link 2

Inertial Axis

~03

Momentum r2Lnk

Wheel
04•..• t0

rl

c.m. 1 03 2 = 03 - 02

N 3  021 =02 - 01

Satellite Main Body

Figure 3.2 Inertial Angles And Vectors

The vectors r 1 , r2 , and r3 describe the location of the center of mass of each of

the manipulators in terms of inertial coordinates. The angles 021, 031, and 032

represent relative displacements of the joints and can be derived from the inertial

coordinates 01, 02, and 03 in such a way that 021 = 02 - 01, 031 = 03 - 01, and

032 = 03 - 02.
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B. EQUATIONS OF MOTION

A momentum wheel was used to apply a control torque to the main body.

The motion of the momentum wheel is de-coupled from the motion of the main

body. It is assumed that the momentum wheel is only an actuator that is used to

control the motion of the main body and counteract torques generated by the

movement of the manipulator.

1. Lagrange's Equations Of Motion

Lagrange's equation for n-dimensional dynamic systems are stated as

= LL _L_ Qi, wherei=l,2,3,..., n (3.1)
dqj

L=T-V

V - Potential Energy

T - Kinetic Energy

q - ith Generalized Coordinate

4i- it Generalized Velocity

Qi- ith Applied Non conservative Force

For this particular problem, the system requires three degrees of freedom

to describe its governing equations of motion. The generalized coordinates and

velocities are chosen to be in terms of inertial coordinates as presented below.

q = 101, 02, 0 3 )T= (q1, q2, q 3)T (3.2)

q = 01, 02, 63) {-l q2, q3T (33)

2. Kinetic Energy

The first step is to determine the total kinetic energy of the system. The

total kinetic energy of the system is given by
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T=X Ti (3.4)
i=l

Ti=21I6i 2 + 1 mj (ri ri (3.5)
2 2(35

1i - ith Mass Moment Of Inertia About Center Of Mass

mi -iV Mass

3 3
ri"ri= J (3.6)

A more detailed algebraic procedure can be found in Appendix B.

3. Equation Of Motion

Lagrange's equations can be applied to equation (3.4) and the terms can

be arranged in matrix form so that the final form can be written as (3.9).

M(0) + 0(0,6)= Q (3.9)

where
[M 11 m 12m 13 1M(O) =|m21 m 22 m2 3 I
Lm31 M 32 m33 (3.10)

and

m1l hI + 02 [MI + M2 + M31 + M4 Q_ (3.11)

1fl22= 'cjn2+ L21[m(In2)L2 + M1] (3.12)

m33 = Ic.m.3 + Lc.m.32 m3 (3.13)

M1 2= M21 = Li L 2 cos(0 2 1) [m(cn12 )+ (3.14)SL21

m13 =m 31 = LI LM3 cos(031) m 3  (3.15)
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M23 =M32 = L2 Len, cos(032) m3  (3.16)

G(0,0) = G(2) (3.17)

LG(3)-

G(1)I (M2 L 1 Lc~m.) + (in 3 L 1 L2)] sin (e, 21)o
(in3  L1 Lcm .3) sin 6 (02-) 2 (3.18)

G(2) = -[(M 2 L1 Lc.m..) + (M 3 L1 L2 ) ] sin (021) 021 +

(M 3 L 2 Lc.m.3) sin (031) 3 (3.19)

G(3) =- (M3 L 1 Lc.m.3) sin (021) 01 -

(M 3 L 2 Lc.m.3) sin (032)22 (3.20)

4. Applied Torques

D' Alembert's principle for virtual work expression was used to determine

the expressions for Q for the equations of motion. As written, Q is a vector

containing the torques applied by the actuators at each joint in terms of inertial

coordinates. At this point it will be beneficial to rewrite the Q vector in terms of

local coordinates. The virtual work applied to the system is given by the

following equation.

8W=± Qi 8(0i= W (3.21)
i--1 i=l

The elements of Q are in terms of torques applied to inertial coordinates. Since

each actuator applies a local torque, it was beneficial to rearrange (3.21) and write

Q in terms of the local torques applied by the individual actuators. The virtual
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work described in equation (3.21) can be described in terms of these local torques

as follows.

MWI =-U1 01 - U2 801 (3.22)

8W2 = U2 52 -U3 02  (3.23)

W3 = U3 802 (3.24)

In matrix format Q can be written in terms of a control influence matrix B and the

local torque vector, y as written in (3.25).

Q = B u = [Q1, Q2, Q3]T (3.25)

Q1 = U1 - U2 (3.26)

Q2 = U2 - U3 (3.27)

Q3 = u3 (3.28)

where

B= 0 1-1 Uu2
0 0 1LU31

C. LYAPUNOV STABLE CONTROLLER DESIGN

This design for a stable non-linear controller is based upon Lyapunov's

Stability Theory. This theory is also known as Lyapunov's Second or Direct

method. This theory is covered in greater detail in [Refs. 1, 2, 14, and 15]. To

review the Lyapunov Stability Theory, a system without any external forces or

torques is assumed. This system is assumed to have a single equilibrium state. For

this system, a positive definite function is assumed to be an exact integral of the
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system under some idealization. This function is termed a Lyapunov function and

is selected to satisfy the requirements that it is zero at the desired equilibrium and

positive everywhere else. This function may be represented by the system total

energy or the Hamiltonian of the system for most of the time invariant mechanical

systems. If this system is perturbed from its equilibrium state, the energy state is

increased to some positive energy level. Depending upon the nature of the

Lyapunov function, one of the following conclusions can be drawn.

"* If the system dynamics dictate that the initial energy of the system does
not increase with time, then the system is stable.

"* If the energy of the system monotonically decreases with time for all initial
conditions, and eventually goes to zero, then the system is asymptotically
stable.

"* If the energy increases for any initial condition, then the system is unstable.

"* If the energy measure neither increases, nor decreases as a function of time
then no conclusion can be drawn.

Despite the power of this theory, there is no unified process to find candidate

Lyapunov functions that globally satisfy stability requirements. A more complete

description of the Lyapunov stable controller design for flexible structures can be

found in [Refs. 1 and 2].

1. Lyapunov Stable Controller With Linear Feedback

For this application, a simple non-linear controller with linear feedback of

position and velocity information is the primary objective. The candidate

Lyapunov function for this application is of the form

U = E + f (50 1, 8• 2 , 803) (3.29)
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where E is defined as the "work energy" of the Lyapunov function and "f" is a

positive function of 801, 802, and 803. Note that Y' is a pseudo potential energy

that renders the Lyapunov function positive definite with respect to the new

equilibrium point. In addition, 80i = 0i - 0i, where 0 is a constant that describe

the final joint angle.

(01, 02, 03, 61, 62, 03) f = (01f, 02f, 03f, 0, 0, 0) (3.30)

The Lyapunov function in (3.30), can be differentiated to obtain

- + 80i (3.31)

The "work energy rate", E, of (3.31) can be directly obtained from (3.22) through

(3.24) and the "pseudo energy rate" of the system is defined in (3.33).

E = (Ul - u2) 8601 + (u 2 - u3) 8602 + u3 8603 (3.32)

3

"Pseudo Energy Rate" aI -- f-- 86i (3.33)
i=l •(80i)

Equations (3.32) and (3.33) can be substituted into (3.31) to form equation (3.34)

which can be further simplified to equation (3.35).

U = (ul - u2) 8601 + (u2 u3) 8602 + U3 8603
3 af (3.34)

86, U1 -U2 + a + 82-- U3+ a

U2+ _+02(u2-u3+ O-0)) (3.35)

+ 603(U3 + V8 () ý)

Based on (3.35), it is evident that a function can be selected such that U < 0,

which is the stability condition in the Lyapunov sense. Therefore, the control

laws are chosen to satisfy the following relations
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UI -U2+ '- = -gl, 6i, (3.36)

U2 - U3 + ý---) =-g 2 ,86 2  (3.37)

U3 + --- _f =-93, 53 (3.38)

where,

g1, > 0, g 2 , > 0, g 3 , > 0, g 1 > 0, g 2 , > 0, and g 3 , > 0

for

f>0

In addition,

uJ = - •( •tA12 + g2, 862 + g 3, 863 (3.40)

By selecting an appropriate function for "fT equation, the stabilizing control laws

(Ul, u2, U3) ,atisfying the U _< 0 requirement can be built. For this case, assume

that "T' s defined as follows

f =I (gi, 802 + 802+ 8p02)

(3.41)

where

g1p > 0, g2p > 0, g3p > 0

For a controller using pure linear feedback, (3.36-3.38) can be simplified as

described below.

u3 =- g 3, 803 - g 3, 63 (3.42)

u2 =u3 - g;2802 -g 2, 602 (3.43)

U1 = u2 - g, 501 - g1, 561 (3.44)
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80i =0i -0i, for i = 1,2,3 (3.45)

8i=6i - 6it (3.46)

where

i0=0 fori= 1,2,3

2. Lyapunov Stable Tracking Controller

In a similar way, the Lyapunov stable tracking controller can also be

derived. Lyapunov stability is not proven here but is discussed in more detail in

[Ref. 1]. In this application, a function generator was used to generate a reference

trajectory for the controller to follow. With this type of controller, a fifth order

polynomial was used to generate a desired tip trajectory with a two link closed

loop inverse kinematic solution in one case. In another case a "near-minimum-

time" torque shaping scheme was utilized to generate a reference trajectory. Both

these trajectory generators will be discussed in more detail in following sections.

The control torques required for this reference tracking controller are presented

next.

&u3 = -g•503 -g39163 (3.47)

8U2 = 8u3 - g2p 602 - g2 8602 (3.48)

8ul =8U2 -g9j 801 - gi, 861 (3.49)

where

80i= Oi - ei0 (3.50)

86i "-6i - 6i4 (3.51l)

8ui = ui- ui• (3.52)
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The control laws presented above can be rigorously proven to satisfy the

Lyapunov Stability condition if 50i and 8ii are very small.

D. REFERENCE TRAJECTORY GENERATION

For the tracking controller developed previously while discussing the

Lyapunov stable tracking controller requires some reference trajectories. Here

trajectory refers to a time history of position, velocity, and acceleration for each

degree of freedom. The primary consideration for generating a trajectory lies in

the fact that the trajectory must first of all be smooth and second it must be easily

calcuiated. In this thesis, two different techniques will be used to generate the

required trajectory information to stabilize and control the system.

The first trajectory that will be discussed involves using a fifth order

polynomial to describe the path of the tip of the link three of the manipulator. In

the second trajectory, a near-minimum-time maneuver using input torque shaping

will be used to generate the desired trajectory.

1. Polynomial Reference Trajectory

For the tracking controller discussed in the previous section, it is usually

difficult if not impossible to obtain the open-loop solutions for the theoretical

reference system of differential equations. For practical considerations it is often

advantageous to design the control system that will follow an easy to calculate

path. For robotic applications, a polynomial of order 3 or higher is often used to

specify the position of the end of the manipulator. For this application, imagine a

two link manipulator attached to the spacecraft main body as depicted in Figure

3.3. In this case, the maneuver attempts to position link two from an initial angle

of 20 degrees to a final position of 40 degrees and link three is maneuvered from

40 to 60 degrees. For a two link manipulator, there exists a closed loop solution
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to the inverse kinematic problem that can be quickly and easily computed. The

closed loop solution is described in more detail in appendix B. For this

manipulator, given the beginning and final coordinates of the manipulator, the

vector r is used to specify the position of the end point of link two as a function

of time. This vector is presented in Figure 3.3.

N2 N2

Y3f Reference Maneuver
... Polynomial

c. m.3 "

Y3o -- - -- --- -- ---- - -- -- - - - -

rr

I I,

Figure 3.3 Polynomial Reference Maneuver
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r" Wt -r (to) + f W(ti [(It) - - (to)] (3.53)

To simplify the calculations, t can be written as a function of normalized time, 17,

given the start time to and finish time tf. Note that for to < t < tf, then 0 < T < 1.

= _ t - to (3.54)

tf- to

A fifth order polynomial was used for this application. This allowed the

user to specify the beginning and final velocities and accelerations as well as the

beginning and final positions of the tip. The polynomial for this controller was of

the form

f(T) = C1 + C2 T + C3t12 + C4 T3 + C5T 4 + C61T5  (3.55)

and was subject to the following boundary conditions.

f (0) = o,f (0) = O, (0) = 0

f (1) = 1iJ (1) = 0,J (1) = 0

The resulting expression for f(1) is obtained as

f(T) = 10 T3 - 15t'4 + 6,15  (3.56)

Equation (3.56) can be differentiated with respect to time. These

expressions were utilized to calculate velocities and accelerations and are

presented in equations (3.57) and (3.58).

f(17) = 30 , 2 - 60 ,3 + 30 T4  (3.57)

f(1) = 60r t- 180 r2 + 120, 3  (3.58)

Equation (3.53) can also be differential with respect to time to give the velocity

and acceleration of the tip of link three purely as a function of time.

Vector Position:
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r (r) = -r(to) + f (c) [rr(tf) - r(to)] (3.59)

Vector Velocity:

r r) = (fr) [(tf) - r(to (3.60)
tf- to

Vector Acceleration:

r (r) () -(t--t°)] (3.61)

With the position of the tip known as a function of time, the angles 021

and 032 can be solved for directly as can 02 and 03 via the two link closed loop

solution of the inverse kinematics problem. At this point 01, 01, and 01 are all

assumed to be comparatively small. The Jacobian can be used to define the

relationship between the velocity and angular velocity as well as the tip

acceleration and angular acceleration as described in the following equations.

r =HM0 (3.62)

where H is the Jacobian corresponding to the given configuration.

H - 12 sin (02), - 13 sin (03) 1 (3.63)

12 cos (02), 13 cos (03)

r H 11+ H (0) (3.64)

= - 12 cos (02), - 13 cos (03) (3.65)

- 12 sin (02), 1:, sin (03) (

With the above equatiohs. he position (angular and cartesian), velocity

(angular and cartesian), and acceleration (angular and cartesian), can all be

determined as functions of time. With this information, and the physical
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characteristics of the system, the reference torques can also be determined using

equation presented below.

Uref- B-1 [M (0) 0 + G(0,0)] (3.66)

2. Minimum-Time-Maneuver

For an ideal case, of a single degree of freedom system, the minimum time

required to perform a particular maneuver is achieved by applying the maximum

available torque for one-half of the time required to complete the maneuver

followed by the remaining half with the maximum negative torque. This results in

a controller where the torque is always operated at its maximum value and gives

rise to a torque shaping function, position, velocity, and accelerations profiles as

presented in Figure 3.4. This type of controllei Is sometimes referred to as a bang-

bang controller.

1.2

12

0o.4." -',- .

0

Shape Function

S-0.4 - Reference Angle

-0.8 -.-.-.-- .Reference Velocity

Reference Acceleration

-1.2 1 • _-

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Normalized Time

Figure 3.4 Bang-Bang Minimum Time References
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For an application with a single degree of freedom, the relationship

between the angular acceleration and the applied torque is given by equation

(3.67) with the applied torques given by equation (3.68).

I =u (3.67)

Umax, for 0 < t < •f

u=-Umax, for 2t1 < (3.68)

Bang-Bang control theory for minimum time maneuvers is discussed in more

detail in [Refs. 1 and 2].

3. Near-Minimum-Time Rigid Body Maneuver

A more general case of the bang-bang, minimum time controller is the

near-minimum-time controller. The bang-bang controller does maneuver the

manipulator from the initial to final positions in the minimum amount of time. The

primary drawback of the bang-bang controller is the rapid rise of the torque

trajectory. This results in a rapid acceleration followed by a rapid deceleration

which will require actuators with instantaneous switching capacity which is not

practical and a robust structural design for the manipulators themselves. By

introducing an input shape function, the instantaneous rise in the torque

trajectory can be reduced, resulting in slightly smaller accelerations which will in

turn require smaller actuators and reduced structural requirements. For

comaparison, the input shaping function for a = 0.1 and a = 0.25 are presented

in Figures 3.5 and 3.6 respectively.

The differential equations used to describe the minimum time maneuver

above can be modified so that they are of the form.

I eref = Uref = Umax f(At,tf,t) (3.70)
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Figure 3.5 Normalized Input Shaping Funciton With ax = 0.1
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Figure 3.6 Normalized Input Shaping Funciton With a - 0.25
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Where the input shaping function is suggested in the form.

=ý_A 3 [- 2AZttj] for 0:5t <At

1 for At fo t < tt
f (At,tft)= I1- 2/ t - ti[3 - t2 ý-t}

2-A- 32 - 2A 2 for tl < t <t2

= - 1 for t2 < t < t3

=-1 +t -- 3-213A- 2 for t 3 <t < tfýý At At (3.69)

where

tf = Maneuver Time

t= =t - At

t2 =ts+At

t3 tf- At

At=xtt =Rise Time

ts= tf = Switching Time, where I = 0.5

To determine a relationship between the angular acceleration and the

maximum available torque we begin with the non-linear equations of motion

M(0) + G(0, 0) = Bu (3.70)

where

M(0) - Mass Matrix

G{0, 6) - Coriolis Acceleration Terms

u - Local Torques
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Equation (3.70) is linearized by eliminating all non-linear cosine, sine, and higher

order terms. These linearization process results in the following equation for an

ith link.

I 6ref = Uref = Umax f(At,tft) (3.71)

I - Moment Of Inertia About Axis Of Rotation

Equation (3.71) can be reorganized into the form of the following equation.

ýef - Umax f(At,tft) (3.72)
I

In this equation, um= is a design parameter that is determined by the

characteristics of the actuator used to drive the manipulators. For this application,

all the actuators are the same geared motor. f(At,tf,t) can be modified by varying

the cc variable. I, the linearized mass moment of inertia, is determined by the mass

characteristics of the system and does not vary with time or changing geometry.

Given a maximum torque umax, and an input shaping function with suitable

boundary conditions, the reference position and velocities can be determined by

integrating the following equations piece wise of the time interval determined by

the maximum torque.

6ref(t) = 60 + U-maJ f(At,tf,t) dt (3.73)

Orel(t) = 00 + 60 (t-to) + Umax f f(At,tf,T2) dC2 dTl (3.74)
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where

to=O =OO(o)= 00 o)=o

t = tf O (tf) = Of 4tf) = 0

are the boundary conditions at the start and completion of the maneuver. The

resulting reference equations are presented in Appendix B.

The near-minimum-time to complete the maneuver can be obtained by

setting t = tf in the equation presented below and obtained from Appendix B.

Of Umax = ý + 2 10 (3.75)

By doing this, a relationship between the time to complete the maneuver

and the maximum torque available can be determined for an ith link.

(3.76)ti = ; U (_ •"f- - -1_'03)(.6

Umax. - i (f1 -6+) (3.77)

For this application, the time derived with the above equations represents the

near-minimum-time required to perform the maneuver for only one joint.

E. ANALYTICAL MODEL SUMMARY

This research project analyzes how a two link manipulator can be controlled

from a spacecraft main body while minimizing the effect of manipulator motion

upon the main body In general one can calculate the interaction force between

the links and main body by using the Newtonian approach with free body

diagrams. Based on this analysis, the more smoothly that the maneuver is

performed, the smaller the interactive force will be. Two basic type of controllers

were developed. In the first controller, linear feedback of position and velocity
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information from the joints was used to control the endpoint position. In the

second type of controller, position and velocity information are used in

conjunction with a reference trajectory to control endpoint position.

For this type of controller, two different schemes were used to generate the

reference trajectory. In the first, a fifth order polynomial in conjunction with the

two link closed loop solution for the manipulator inverse kinematics and the

Jacobian were used to generate the reference trajectory. In the second, a near-

minimum-time torque shaping technique was used to determine the reference

trajectory. All components, including the manipulator and main body, are

modeled as rigid bodies.
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IV. RESULTS AND DISCUSSION

Analytical results from the simulation are presented in this section. Three

different techniques were used to control and stabilize the position of the

manipulator. Results from the linear feedback controller with constant gains,

polynomial reference tracking controller and near-minimum-time reference

tracking controllers are presented sequentially.

A. REFERENCE MANEUVER

The three most import criteria with respect to this research are the end tip final

position, joint torques, and the effect of manipulator motion on the attitude of the

main body. Final position for the endpoint of the manipulator is critical for

performing assembly tasks. Joint torques are important to verify if the servo-

actuators can perform the desired maneuvers. The effect of the manipulator

motion upon the main body is critical due to the excitation of flexible structures

on the spacecraft or the effect upon antenna pointing accuracy to maintain a

communications link.

To be able to effectively compare the performance of the three different

controllers, a standard reference maneuver was developed. For this maneuver, the

desired rotation of the main body was zero. Link 1 was programmed to move

from an inertial angle of 20 degrees to 40 degrees. Link 2 was programmed to

move from an initial inertial angle of 40 degrees to a final position of 60 degrees.

This reference maneuver is depicted in Figure 4.1
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Figure 4.1 Reference Maneuver

B. LINEAR CONSTANT GAIN FEEDBACK CONTROLLER

The theory behind the linear constant gain feedback, controller is described

in more detail in Chapter III and [Ref. 1,15]. Position gains of 1 ( Gp = 1 )and

velocity gains of 5 ( Gv = 5 ) were used for these plots. Small gain ( Gp = 0.1 and

Gv = 0.2 ) plots are presented in Appendix D for comparison.

The linear feedback controller was the simplest controller conceptually and

the easiest to implement. This controller provided stable control over a wide
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range of gains and for a wide variety of maneuvers. No knowledge of the system

mass or inertia characteristics was required for this controller. Only the position

and velocity gains, and beginning and final arm positions were required to

calculate the required control torques to perform the maneuver.

The joint time history for this case is presented in Figure 4.2 and the joint

velocity time history is presented in Figure 4.3. Performance of this control

system was directly related to gain selection. The system was relatively sensitive

to small changes in the position and velocity gains. This resulted in changes to

the maneuver time and control system damping. The system was stable for all

gains and maneuvers evaluated and it could be proven by Lyapunov stability

theory that the system was globally stable. Even with system stability not really

in question, there was no way to systematically select position and velocity gains

to optimize maneuver time or torques to achieve desired performance measures.

The magnitude of the gains directly impacted the performance of the

manipulator and the stability of the main body. Larger gains generated larger

control torques and reduced the time required to perform the maneuver. The

damping of the system could also be varied with the gain selection. The effect of

this movement on the main body was small but still resulted in a displacement of

nearly 2 degrees. Although this is apparently a small displacement, 2 degrees may

still cause degradation in communication with the satellite due to antenna

pointing errors.

Time history plots for torques and momentum wheel speed are presented in

Figures 4.4 and 4.5 respectively. The response of this system to the controller

was characterized by a very rapid increase in torque immediately after initiation of
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the maneuver followed by a rapid decrease after a few seconds. This response

was similar to an impulse input that became more pronounced with increased

commanded motion or with increased gains. Large gains are desirable to achieve

acceptable levels of performance but must be balanced against actuator

characteristics , magnitude of the maneuver, and structural considerations.. A

large and sudden increase in commanded torque could saturate the actuator or

excite flexible appendages attached to the spacecraft.

The large initial torques, depicted in Figures 4.4 and 4.5, correspond to

rapid changes in the speed of the momentum wheel. Large speed changes are

required during the initial portion of the maneuver to generate large toques to

counteract the forces generated by the manipulator. Based on previous

experience with the FSS and analysis of electrical power requirements of the

actuator and power supply, it is reasonable that the actuator will be able to

compensate for the torques generated by the movement of the manipulator.

C. POLYNOMIAL REFERENCE TRACKING CONTROLLER

To rectify the problems encountered with the simple linear constant gain

feedback controller a reference tracking controller was implemented. In the

previous case, there was a large initial error for which the system was attempting

to correct. In this controller, a smooth, fifth order polynomial was used to

generate a reference trajectory so that the correction could be evenly partitioned

over a specified maneuver time. With this information, reference torques, angular

position, velocity, and acceleration were obtained as a smooth function of time.

As a result the initial "jump" generated by the linear feedback controller was

eliminated and the manipulator was able to track a smooth path from initial to
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final conditions. A variation of the Lyapunov stable control law used in the

previous controller was used with this reference trajectory controller.

With this controller, the time required to perform the maneuver could be

specified but was subject to the characteristics of the actuators and the task being

performed. Two maneuver times were analyzed. In the first case, the time to

perform the maneuver was fixed at 2.5 seconds. This time was selected to

determine joint torques, velocities, and momentum wheel speeds while operating

near the torque limit of the actuators. In the second case, a time of 5 seconds

used to determine the effect of maneuver time on the actuators. These plots for

the 5 second maneuver time are included in Appendix D to demonstrate the effect

of maneuver time upon joint torques and velocities.

Position and velocity time history of the manipulator for a maneuver time of

2.5 seconds are presented in Figure 4.6. and 4.7 respectively. Torque and

momentum wheel speed plots for a maneuver time of 2.5 seconds are presented in

Figures 4.8 and 4.9 respectively.

Movement of the manipulator did not cause measurable disturbance to the

main body. Manipulator torques were smoothly applied, and the control system

was able to counter these torques effectively and in a timely manncr, negating

motion by the main body. The stability of the main body during manipulator

motion is desirable since it will reduce pointing errors for unstablized imaging

devices or high gain antenna communications systems.

The polynomial reference controller demonstrated stable operation over a

wide variety of operating conditions and feedback gains. The magnitude of the

gains had little or no effect upon the maneuver time since this characteristic was

specified in the reference maneuver. Commanded torques closely tracked the
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reference torques with no discernible difference between the reference and

commanded torques. The polynomial reference tracking controller provided

smooth position control commands for all maneuvers. With the tracking

controller, there were no discontinuities or sudden changes in torque commands.

The performance was independent of the magnitude of the commanded maneuver

with no effect of gain selection being noted. Maneuver time could be specified

but was subject to actuator and structural characteristics. Feedback errors

remained small throughout the maneuver as the controller smoothly tracked the

reference. This resulted in smoothly changing torque commands with smooth and

predictable motion of the manipulator.

D. NEAR-MINIMUM-TIME REFERENCE TRACKING CONTROLLER

The theory behind the near-minimum-time tracking controller is described in

Chapter III and [Ref. 1, 2]. Two cases for this controller were selected. In the first

case, a was set equal to 0.25. The shape function generated by this reference are

sinusoidal in shape. In the second case, an a of 0.1 was used. As a approaches

zero, the input torque shape approached that of a square wave with a period of

the maneuver time. This shape more closely approximated the minimum time

bang-bang controller. A maneuver times of 2.5 seconds was used so that the

polynomial reference and the near-minimum-time control system performance

characteristics could be compared. Similar plots with a maneuver time of 5

seconds can be found in Appendix D.

The general performance of the near-minimum-time reference tracking

controller provided some of the advantages and disadvantages of the two

previous control systems. Since this was a tracking controller and the feedback

45



errors were generally small, the commanded torques were generally smooth with

only minor disturbances to the main body.

Near minimum-time reference position and velocity time history of the

manipulator for a maneuver time of 2.5 seconds with a = 0.25 are presented in

Figure 4.10. and 4.11 respectively. Momentum wheel speed plots for a maneuver

time of 2.5 seconds with a = 0.25 are presented in Figures 4.12 and 4.13

respectively. Near minimum-time reference position and velocity time history of

the manipulator for a maneuver time of 2.5 seconds with a = 0.1 are presented in

Figure 4.14. and 4.15 respectively. Momentum wheel speed plots for a maneuver

time of 2.5 seconds with a = 0.1 are presented in Figures 4.16 and 4.17

respectively.

With a = 0.25 the input torque shaping closely resembles that of the

polynomial reference trajectory tracking controller. As with the polynomial

reference trajectory, the manipulator links moved smoothly from the initial to the

final conditions. Note that for this controller, there is only a very small angular

displacement of the main body.

Joint velocities for the manipulator links follow a smooth path, beginning and

ending with zero velocities. With this controller, note that unlike the previous

controller, there is no phase difference between the movement of the manipulator

links. Both links move with the same velocity at the same time. The main body

also displays a very small angular velocity.
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As a goes toward zero, the shape of the input torque reference becomes

more square. The square comers of the torque input are difficult for the controller

to track and required larger gains. This characteristic is best noted in the previous

depicted plots with cc = 0.1. Note that rapid changes in the wheel speed are

required. Even with large gains, the main body was still disturbed by motions.

The jerky motion of the manipulator disturbed the main body and resulted in small

but detectable position changes. As in the previous controllers, any disturbance

to the main body can degrade communications links or cause pointing errors for

optical imaging devices.
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V. CONCLUSIONS

Three different control systems were simulated and analyzed. All three

controllers were stable and were able to position the manipulator in a timely and

effective manner. The most significant difference between the controllers turned

out to be how effective the control system was stabilizing the main body while

positioning the manipulator.

The linear feedback controller was the simplest controller conceptually and

the easiest to implement. This controller provided stable control over a wide

range of gains and for a wide variety of maneuvers. Large gains were required to

achieve acceptable levels of performance. Large gains corresponded to large

torques and large displacements of the main body. Position and velocity gains

had to be selected to balance control torques, system performance, and motion of

the main body. As the control system was implemented, it was not possible to

achieve all of these objectives for the given reference maneuver.

The polynomial reference trajectory for robotic applications represents a

classic approach for generating a reference trajectory to position and control a

two link manipulator. This approach also offers the advantage that the reference

trajectory can be pre-calculated off line prior to the maneuver. These pre-

calculated values for the reference trajectory can be used in conjunction with the

controller to minimize real time computational requirements.

The polynomial reference tracking controller provided smooth position

control commands for all maneuvers. With the tracking controller, there were no

discontinuities or sudden changes in torque commands. The performance was

independent of the magnitude of the commanded maneuver and only slightly
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affected by gain selection. Maneuver time could be specified but was subject to

actuator and structural characteristics. Feedback errors remained small

throughout the maneuver as the controller smoothly tracked the reference. This

resulted in smoothly changing torque commands with smooth and predictable

motion of the manipulator. The polynomial reference tracking controller was the

most effective controller implemented with respect to accurate and timely

positioning of the manipulator, and stabilization of the main spacecraft body.

The general performance of the near-minimum-time reference tracking

controller provided some of the advantages and some of the disadvantages of the

two previous control systems. Since this was a tracking controller and the

feedback errors were generally small, the commanded torques were generally

smooth with only minor disturbances to the main body.

The near- minimum-time for the reference maneuver was determined by the

maximum torque capability of each actuator and the magnitude of the maneuver.

The maximum of the three times calculated for each of the three joints was

specified as the maneuver time. For each maneuver, one joint would then become

the limiting case for the selected maneuver based on these requirements. Two of

the three remaining actuators therefore would operate at less than the maximum

toque capability in order to complete the maneuver at the same time as the other

links completed the maneuver.

Large gains were required to force the controller to closely track the

reference input as the input torque shape approached the minimum maneuver

time. Even with larger gains, the controller was not able to completely negate the

torques generated by the manipulator and some small rotations of the main body

were observed.
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Two different control laws were evaluated. In the first, constant gains with

linear feedback was utilized. This controller proved to be the easiest to implement

but did not effectively stabilize the main body during movements by the

manipulator. The second control law entailed using a tracking controller with

constant gains. The reference tracking controller represents a traditional and

successful way of positioning the manipulator. With the reference tracking

controller two different references were used. In the first a polynomial was used

to generate a reference trajectory. This technique proved to be only slightly more

complex than the linear feedback controller with constant gains, was dependent

upon mass and inertia characteristics of the manipulator and was the most

effective at positioning the manipulator while minimizing the motion of the main

body. In the second, a near-minimum-time technique was employed to generate a

reference trajectory. This reference was more complex, but provided the

capability to position the manipulator in near-minimum-time. This technique

provided greater flexibility in shaping the input torque reference but was not as

successful as the polynomial reference tracking controller in stabilizing the main

body. In the end, the polynomial reference tracking controller provided the best

performance of the three controllers simulated.

A. SUBJECTS FOR FUTURE RESEARCH

Lyapunov theory represents only one methodology for nonlinear control

system design. Many other methodologies including neural networks, adaptive

controllers, sliding controllers, and robust controllers among others provide

additional areas for research.

With the addition of the vision server to the Spacecraft Robotics Simulation

Lab, the capability to track a target as well as the endpoint of the manipulator will
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become available. This provides the capabilty to perform end point tracking

tasks. Once this is successful with a stationary target, the same can be repeated

with a moving target.

The design of the manipulators allows for the replacement of the rigid

manipulator arm design with a flexible arm design. Control system design for

accurately and quickly positioning the flexible manipulator provides another area

for future research.

The minimum time to complete the maneuver was the longest of the three

joint maneuver times and was based on the maximum torque capabilities of the

actuator and the magnitude of the maneuver. With the near-minimum-time

reference tracking controller, the switching time for the maneuver was specified

to be one half of the maneuver time. This methodology resulted in only one of

the three actuators working at maximum torque. By parameterizing the near-

minimum-time equations in another way, it may be possible to optimize the

solution in terms of a variable switching time and variable maneuver time for each

of the actuators. This may allow optimization of the torques or time required to

perform the maneuver, maneuver time or torque requirements.
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APPENDIX A

TABLE A.1 Servo Motor Characteristics

Manipulator Momentum
Characteristic Units Actuator Wheel

Actuator

Model Number 9FGHD JR16M4CH-1

Gear Reduction Ratio 147.51 :1 1:1.0
Rated Speed rev per minute 17 3000

Rated Torque inch-pound 80 31.85
Rated Current amps 5:6 7.79

Rated Voltage volts 12 168

Peak Torque inch-pound 119 341.43

Peak Current amps 62 79.3

Peak Voltage volts 13.2 7.67

Outside Diameter inches 4.75 7.4

Height inches 3.1 4.5
Weight pounds 3.2 17.5

Torque Constant oz-in/amp 3.23 69.01

Back EMF Constant volts/krpm 2.39 51

Terminal Resistance ohms 0.95 1.4

Average Friction Torque oz-in 2.5 11
Viscous Damping Constant oz-in/krpm 0.3 7.84

Moment Cf Inertia oz-in/secA2 0.0052 0.084
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APPENDIX B

A. SYSTEM KINETIC ENERGY

1. Body 1 Kinetic Energy
T1 =1-11 01 2 (13.1)

2

2. Body 2 Kinetic Energy

T2 iIcm 2 022 + m 2 L 02
2

2 " 2
+ m2 L1 Lc.m. 2 01 02 COS(021) (B.2)

+ I-m2 Lc.m. 2 622
2

3. Body 3 Kinetic Energy

T3  I1cm3 0 3
2 + 1 m3 LI2 01 + L2 02 + Lcm. 3 21 '3

"+ m 3 L 2 01 02 COs (0 2 1) + m 3 L 3 Lc.m.3 01 03 COS (0 3 1) (B.3)

"+ m3 L2 Lc.m. 02 03 COS (032)

4. Total Kinetic Energy
3

T=X Ti (B.4)
i=I

B. EQUATIONS OF MOTION

1. Mass Matrix

The mass matrix is a function of the mass and inertia characteristics of the

system as well as the geometry of the system. The mass matrix is defined in

equation (B.5) where the elements of the mass matrix are described as follows in

equations (B.6) through (B.1 1).
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[iml12m13 1
M(0) = iM2 1 m22 m23

[M 31 m32 m33 J(B.5)

where

rol = I1 + L2 [mI + M2 + M3] + m4 14 (B.6)

M22= Icmf2+ L2[m2(•t-)2 )+m 31 (B.7)

"m33 = 6C1t3 + 4 2 m3  (B.8)

M2= M21 L, L2 COS(0 21) [m2 ( 2 )+ m3  (B.9)L21

Min3 =m31 = L1, L3 cos(031) M3 (B.10)

M23 = M32 = L 2 4M3 cOs(032) M3  (B.11)

2. Coriolis And Centrifugal Acceleration Terms:

G(I)1
G(0,6) = ]G(2)1 (.12)

-G(3)-

G(1) =[ (m2 L1 Lc.m.2)+ (M3 L1 L2)] sin (021) 2 +

(m3 L1 Lc.m.3) sin (031) 302 (B.13)

G(2) =-[(m2 LI Lc.m.2) + (M3 L1 LE)] sin (021) 0 +

(m3 L2 Lc.m.3) sin (031)02 (B.14)

G(3) =- (M3 L1 Lc.m. 3) sin (021) 02 - (M3 L2 Lc.m.3) sin (032) 02 (B.15)
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C. POLYNOMIAL REFERENCE TRAJECTORY

1. Vector Polynomial Describing Tip Position:

r r(to) + 9(t)[V(tf) - r(to)] (13.16)

"r =t---to- ,0<t <t4,0<'t< I

tf- to

f(T)=ci +c 2 T+c 3 T2 + c 4 '3 + C5 T4 + C6 T5  (B.17)

2. Boundary Conditions And Polynomials

9o) =0,40) =0,A0) =0
0()= 1,41)=0,01)=0

f(,r) = 10 T3 - 15,14 + 6 t 5  (B. 18)

f(') = 30 T2 - 60 r3 + 30 T4  (B.19)

f(t) = 60 t - 180,"2 + 120,C3  (B.20)

3. Vector Position
r (r) = (to) + f (Tc) Fr (tf) - -r (to)] (B.2 1)

4. Vector Velocity

f (T) (tf)- !(to) (B.22)
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5. Vector Acceleration

r (t) "- f-(t) (t t -(t°) (B.23)

D. TWO LINK INVERSE KINEMATICS

Law Of Sines & Cosines:
x2 + y2=12 + 12 + 2 ll 12 cos (02 -01) (B.24)

021 = 02 - 01 (B.25)

Cos (021 )=X2+ y2.12 12 (13.26)
211 12

sin (021 )=+ 1- cos (021)2 (B.27)

(sin (021 ) )
021 = atan2 ýcos (021 (B.28)

Velocity Vector:

= H] 
((B.29)

H [ -12 sin (02), 13 sin(e 3) (B.30)

12 COS (02), 13 cos (03)

Acceleration Vector:

r = [H] {(0+in] (01 (B.316
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-12 CO (02). - 13 cos (03)

-12 sin (02), -13 sin (03).

E. NEAR MINIMUM TIME RIGID BODY MANEUVER

1. Near-Minimum-Time Maneuver

I 0 ref = Uref = Umax f(At,tf,t) (B.33)

I - Moment Of Inertia About Axis Of Rotation

tf - Maneuver Time

t1 =t5 -AItl= +s At
t2 =ts +At

t3 = - At

At = X tf = Rise Time

ts = 3 tf = Switching Time, where J = 0.5

2. Torque Shaping Function

= (t) 2 [3- 2 (t-)] for 0 5 t <At

= 1 for At It< I

f(Vttf,t)= =I - 2 {(t-t)2f 3 -2(tt1)]) fort] 5t<t2
-2A t -ý-P(13.34)

= - 1 for t2 < t < t3

+- - t 3 - 2 It-t for t3 -5 t < tf
\\ At ý At

0ref(t) = 60 + • f(At,tf,T) dt (B.35)
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Oref(t) = O0 + 60 (t-to) + UMax f(At,tft2) dt 2 dct (B.36)f

3. Boundary Conditions

t = 0, q0o)- =o o o) = o
t = tf; 0 (tf) = Of 0tf) = 0

Solution for the piece wise integration of equations (B.35) and (B.36) for

the given time interval provides us with refeence angular displacements and

angular velocity.

4. Reference Angular Displacements And Velocities

0O5t_5At

ref- =Umax At2 [I t4 t (t337
I A4t At

O)ref = ma [(LK1L4 " A)4I(B.38)

At:<_ t 5 t1

Oref = Umax [t2 tAt + 3- (At)5] (B.39)1I 2 20

Or f = - m (tAt) (1.40)
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tl <_ t_< t2

[23-U2 -3a + t2 +

0ref Uma& (2Atf (t)-tl 2 • + (Li 5 + (B.4tI12 12Atl 1 22At 52A

t2 -I • - t3

0 1f Umx! -2-1t +81tf2+ Ltf -AtJ2  (t-t2'

Urf V 1 +2 - L4 t (B.43)
2 2 (

0ref= Umax IL 20 4 81 2 (B.43)

t3 5-< t-<5 tf

1[_ A- 2 -I ( +-L]tf2 + -LAt (t - t3) (Atf!

Oe = ma 20 2 4J 2 (.5
0,e2 +m ' [-1- t t+~ - t31 4 - 1 -It -t31 (.5

SL2/ At ý 4- A-t - - ! At

6ref = Um'ax At + At [- (! - t=) + ýt-tý3+ I (t2)314 (B.46)
1 2 At At 2 22At
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At time t = tf;

Oref = Uma([4 2 10 (B.47)

eref = 0 (B.48)

5. Near-Minimum-Time Relationships

tfi i "f (B.49)
UmaxI( X+ 1L0 a2)

Umax3 - i (Of1 - 00) (B.50)
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APPENDIX C

A. LINEAR FEEDBACK MATLAB SIMULATION PROGRAM

1. Main Program For Linear Feedback Simulation

% Constants

% Lenght of Manipulators

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

% Distance From Axis Of Rotation To Center Of Mass

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass Of Major Components (kg)

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertias Of Major Components (kg-mA2)

I(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.0912;
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"% Integrate Equations Of Motion Using Commercial

"% Matlab Runge-Kutta 4 Routine

"% Boundary Conditions

to = 0;

tfinal = 40;

X0 = [0.0; 0.0; 0.0; 0*pi/l 80; 2O*pi/I 80; 40*pi/l 801;

tol = le-8;

trace=l;

Call "lfbrk" Function And Integrate Equations Of Motion

[t,x,uu] = rku2('Ifbrk' ,tO,tfinal,xO,tol,trace);

% Program To Calculate Motor Torque, Current, and Voltage

TF=l.41e-2; % N-rn

KT=2.28e-2; % N-rn/amp

KD=2.00573e-5; % N-mlrad/sec

K-E=2.28271e-2; % Voltlrad/sec

RT=-0.95; % ohms

j=length(t)

for i=l :j;
anip22(i) = (uu(i,2)/148.51 + TF + KD * x(i,2)*148.51 ) / KT;

volt22(i) = KE * x(i,2) + RT * amp22(i);

amp33(i) = (uu(i,3)/148.51 + TF + KD -x(i,3)*148.51 ) / KT;

volt33(i) = KE * x(i,3) + RT * amp33(i);

end
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% Program To Calculate Motor Torque, Current, and Voltage

% For Momentum Wheel

TF=0.0777; %N-ni/amp

KD=5.29131e-4; % N-mlrad/sec

KE=-0.487 11; % Voltlrad/sec

RT=1.4; % ohms

Iw=-0.0912; % kg-MA 2

thdO=104.7; % rad/sec (= 1000rpm)

for i=1:j;

tor(i) = UUi,1I);

thddw(i) = tor(i)fIw;

thdw(i) = thddw(i) * t(i) + thdO;

amnp(i) = (tor(i) + TF + KD * thdw(i) )/KT;

volt(i) = KE * thdw(i) + RT * amp(i);

xl (i)=L( 1)*cos(x(i,4));

yl(i)=L(1 )*sin(x(i,4));

x3(i)=x2(i)+L(3 )*cos(x(i,6));

y3(i)=y2(i)+L(3)*sin(x(i,6));

end

% Store Data For Plotting Later

datal. =t,x* 1 80/pi ,uu);

data2--[t,xl ',yl ',x2',y2' ,x3',y3'];

data3=[t,thdw'*30/pi,thddw'*30/piII;
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data4=[t,amnp',amp22' ,amp33' ,volt',volt22',volt33'II;

% Save Data In Text Format

save Ifb9.dat datal /ascii

save IfblO.dat data2 /ascii

save Ifbl I dat data3 Iascii

save lfbl2.dat data4 /ascii

68



2. Linear Feedback Equation Of Motion Function

% Function Containing Linear Feedback Equations Of Motion

function [xdot,U 1] = lfbrk(t,x)

% Constants

% Lenght of Manipulators

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

% Distance From Axis Of Rotation To Center Of Mass

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass Of Major Components (kg)

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertias Of Major Components (kg-mA2)

1(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.0912;
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% Angles

thd(l) = x(l);

thd(2) = x(2);

thd(3) = x(3);

% Convert Input Variables Into Variable Used In This Function

th(1) = x(4 );

th(2) = x(5);

th(3) = x(6);

% Final Conditions For Manipulator And Main Body

thf 1=0;

thf2=40*pi/180;

thf3=60*pi/180;

thdfl =0;

thdf2=0;

thdf3=0;

% Linear Feedback Control Law

glp=.l;

g2p=. 1;

g3p=. 1;

g 1v=.2;

g2v=.2;

g3v=.2;
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% Control Torques

U(3)=-g3p*(th(3)-thf3 )-g3v*(thd(3)-thdf3);

U(2)=U(3)-g2p*(th(2)-thf2)-g2v*(thd(2)-thdf2);

U( I)=U(2)-glIp*(th(lI)-thfl )-g 1 v*(thd(l1)-thdfl);

U1=U';

% Calculate Coeffients For The Equation Of Motion And Integrate

[MM,GM] = mgm(th,thd);

B = [1,-1,0;0,1,-1;0,0,1];

thdd=inv(MM)*(B *U 1-GM');

xdot = [thdd;x(1);x(2);x(3)];
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B. POLYNOMIAL REFERENCE TRACKING CONTROLLER

1. Polynomial Reference Maneuver Tracker Main Program

% EOM3.m Program

% Constants

% Lenght of Manipulators

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

% Distance From Axis Of Rotation To Center Of Mass

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass Of Major Components (kg)

m 1i) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertias Of Major Components (kg-mA2)

I(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) 5.38398e-2;

1(4) = 0.0912;

72



% Boundary Conditions And Integration Time

to =0;

tfinal = 10;

xO = [0.0; 0.0; 0.0; 0*pi/1 80; 20*pi/180; 40*pi/18 0 ];

tol = le-8;

trace=l;

% Integrate Equations Of Motion

[t,x,uu] = rku2('eom3rk',tO,tfinal,xO,tol,trace);

j=size(t);

"% Calculate Electrical Power Requirement For Manipulator Actuators

"% Motor Parameters

TF=1.8e-2 % N-m

KT=2.28e-2 % N-mr/amp

KD=2.00573e-5 % N-m/rad/sec

KE=2.2827le-2 % Volt/rad/sec

RT=0.95 % ohms

j=size(t)

for i=1 :j;

amp22(i) = (uu(2,i)/14 8.51 + TF + KD * x(i,2) ) / KT;

volt22(i) = KE * x(i,2) + RT * amp22(i);

amp33(i) = (uu(3,i)/14 8.51 + TF + KD * x(i,3) ) / KT;

volt33(i) = KE * x(i,3) + XRT * amp33(i);

end

"% Program To Calculate Motor Torque, Current, and Voltage

"% Momentum Wheel
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% Motor Parameters

TF=O0.0777 %N-m

KT=O0.48732 % N-ni/amp

KD=5.2913le-4 % N-mlradlsec

KE=0.4871 1 % Voltlrad/sec

RT=1.4 % ohms

Iw=O0.0912 % kg-m"2

thd0=104.7 % rad/sec (= 1000rpm)

j=size(t)

for i=1:-j;

tor(i) = uu(1 ,i);

thddw(i) = tor(i)/Iw;

thdw(i) = thddw(i) * t(i) + thdO;

amp(i) =(tor~i) + TF + KD * thdw(i) )/KT;

volt(i) = KE * thdw(i) + RT * amp(i);

end
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2. Polynomial Reference Tracking Equations Of Motion Function

function [xdot,U I] = eom3rk(t,x)

% Constants

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertia

1(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.0912;

% Angles

thd(1) = x(l);

thd(2) = x(2);

thd(3) = x(3);

th(l) = x(4);
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th(2) = x(5);

th(3) =x()

[MM,GM] = mgm(th,thd);

% Gains

glp=1.0;

g2p=1.0;

g3p=1 .0;

glv=5.0;

g2v=5.0;

g3v=5.0,;

[Uref,thref,thdref,thddrefl = eom3ref(tLcm~m,I);

dU(3)=-g3p*(th(3)-thref(3))-g3v*(thd(3)-thdref(3));

dU(2)-dU(3 )-g2p*(th(2)-tbref(2))-g2v*(thd(2)-thdref(2));

dU( 1)=dU(2)-gl p*(th(l )-thref(l1))-gl v*(thd(l1)-thdref( 1));

Ul =Uref+dU';

U=U1';

B = [1,-1,0;0,1,-1;0,0,11;

thdd=inv(MM)*(B*U'-GM');

xdot = [thdd;x(1);x(2);x(3)];
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3. Polynomial Reference Trajectory Function

function [Uref,thref,thdref,thddrefl = eomn3ref(tLLcn,mn,I);

thref(1 )=0;

% Initial And Final Time For Maneuver

to 0;

tf= 10;

% Initial And Final Vector Positons

r3xO = L( 1)*cos(thref(l1))+L(2)*cos(20*pi/I 80)+L(3 )*cos(40*pi/I 80);

r3yO = L( 1)*sin(thref(l1))+L(2)*sin(20*pill 80)+L(3)*sin(40*pill 80);

r3xf = L(1 )*cos(thref(l1))+L(2Y"cos(4O*pi/I 80)+L(3)*cos(60*pi/I 80);

r3yf = L( 1)* sin(thref(l1))+L(2)*sin(40*piIl80)+L(3)* sin(60*pi/l 80);

% Calculate Reference Maneuver

tau =( t - tO) I( tf - tO);

r3x =r3xO + (r3xf - r3xO) *10 * tauA 3 - 15 * tiiuA4 + 6 * taUA 5)

r3y r3y0 +(r3yf -r3y0) 10 *taUA 3 - 15 * tauA4 +6 * tauA 5)

r3xd = (r3xf - r3xO )/(tf - tO )*(30 *taUA2 - 60 *taUA 3 + 30 *taUA4);

r3yd = (r3yf - r3yO ) t f - tO )(30 *tauA2 - 60 *tauA3 + 30 *taUA4);

r3xdd =(r3xf-r3X0)/((tf-t0)A2)*(60*tau 1 80*tauA2+ 120*tauA3);

r3ydd =(r3yf-r3y0)/((tf-t0)A2)*(60*tau 1 80*tauA2+1I20*taUA3);
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if (t~f);

r3x=-O;

r3y-=O;

r3xd=-O;

r3yd=-O;

r3xdd=-O;

r3ydd=-O;

end

% Determine Inverse Kinematics

th23 = kink(r3x-L( 1)*cos(tbref(l1)),r3y-L( 1)*sin(thref(l1)),L(2),L(3));

thref(2) = th23(1);

thref(3) = th23(2);

% Calculate Joint Velocites Using Jacobean

H = [-L(2)* sin(thref(2)),-L(3)* sin(thref(3));....

L(2)*cos(fhref(2)), L(3)*cos(thref(3))];

thd23 = inv(H) * [ r3xd; r3yd]

thdref(2) = thd23(1);

thdref(3) = tbd23(2);

% Calculate Joint Acceleration Using Jacobean

Hdot=[-L(2)*thdref(2)*cos(thref(2)),-L(3 ) *thdrf(3 )*cos(thref(3 ));..

-L(2)*thdref(2)*sin(thref(2)),-L(3)*thdref(3)*sin(thref(3))];
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* ~thdd23=inv(H)* ([r3xdd;r3yddl -Hdot* [thdref(2) ;thdref(3 )I);

thddref(2).= thdd23(l);

thddref(3) = thdd23(2);

% Calculate Reference Control Torques

[MM,GM] = mgm(thref~thdref);

B = [1,71,0;0,1,-1;O,0,0,];

Uref = inv(B) * MM * thddref + GM');
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C. NEAR-MINIMUM-TIME RERENCE TRACKING CONTROLLER

1. Main Program

% nmtl program

% Constants

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertia

I(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.0912;

% Maximum Torque

umax=0.300;

% Shaping Function Coefficient
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alfa=0. 1;

beta=0.5;

tO=0;

MM(1 ,1) = 1(1 )+L(1 )A 2*(m(2)+m(3))+L(4)A2*m(4);

MM(2,2) = 1(2) + m(2) * Lcm(2)A2 + m(3) * L(2)A 2;

MM(3,3) = 1(3) + m(3) * Lcm(3)A2;

% Initial And Final Manipulator Position

th0=[0*pi/1 80;20*pill 80;40*pi/1 80];

thf=[0.01 *pi/1 80;40*pi/1 8O;6O*pill 80];

% Determine Minimum Time To Perform Maneuver

T( 1)=sqrt(MM( 1,1 )*(ffif(1 )-thO( 1))i...

(umax(1 )*(114-1/2*alfa+1flO*alfa A2)));

(umax(1)*(l/4- 1/2*alfa+1/10*alfa A2)));

T(3)=sqrt(MM(3 ,3)*(thf(3)-thfO(3))/...

(umax(l )*(l/4-1/2*alfa+1/l0*alfa A2)))

T-max=max(T)

tf=T-max

delt=alfa*tf

tf=T-max

dt=alfa*tf

ts=beta*tf

ti =ts-dt
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t2=ts+dt

t3=tf-dt

echo off;

tO=0;

trace=1;

tol=le-8;

xO=[O;O;0;O*pi/I 80;20*pill 80;40*pi/I 80];

% Integrate Equations Of Motion

[t,x,uu] = rku2('nmtrk' ,tO,tfxO,tol,trace);
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2. Near-Minimum-Time Equations Function

function [xdot,U] = nmtrk(t,x);

umax(1)=0.300;

% Constants

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertia
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I(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.0912;

% Angles

thd(1) = x(1);

thd(2) = x(2);

thd(3) = x(3);

th(1) x(4);

th(2) =x(5);

th(3) =x(6);

[MM,GM] = mgm(th,thd);

% Gains

glp=.10;

g2p=. 10;

g3p=. 10;

glv=.50;

g2v=.50;

g3v=.50;
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[MM,GMI = mgm(th,thd);

[Uref,thref,thdref,thddref] = mnLref(t);

dU(3)=-g3p*(th(3)-thref(3))-g3v*(thd(3)-thdref(3));

dU(21)=dU(2)-g Ip*(th(2I)-thref(21))-g 1v*(thd(21)-thdref( 1));

UI =Uref+dU';

U=U1';

B = [1,-1,0;0,1,-1;0,0,1];

xdot = inv(MM) * B * U' - GM' ); x(1); x(2); x(3) I
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3. Near-Minimum-Time Reference Function

% Reference Generator Function

function [Uref,thref,thdrefthddref] = nmt-ref(t);

umax(1)=0.300;

% Constants

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertia

I(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.0912;

MM(l ,1) = I(l)+L(1 )A 2*(m(2)+m(3))+L(4)A2*m(4);
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MM(2,2) = 1(2) + m(2) * Lcm(2)A2 + m(3) * L(2)A 2;

MM(3,3) = 1(3) + m(3) * Lcm(3)A2;

th0=[O*pi/1 80;20*pi/l 80;40*pi/l 80];

thf=IO.O1 *pi/1 80;40*pi/1 8O;6O*pi/l 80];

alfa=-0.1;

(1/4-1 /2*alfa+1 /1 0*afa A2)));

T(2)=sqrt(MM(2,2)*(thf(2)-th0(2))/(umax(l1)*..

(1/4-1 /2*alfa+1/1 0*alfaA2)));

T(3)=sqrt(MM(3 ,3)*(ffif(3 )-thO(3 ))/(umax(l1)*..

(1/4- 1/2*alfa+1/10*alfa A2)));

T_max=max(T);

tf=T-max;

dt=alfa*Thmax;

ti =tf/2-dt;

t2=tf/2+dt;

t3=tf-dt;

umax(3)=MM(3 ,3)*(flif(3)-thfO(3))/...

(tfA2*( 1/4- 1/2*alfa+1 /1 0*alfa A2));

(tfA2*( 1/4- 1/2*alfa+1 /1 0*alfa A2));

umax(l1)=MM( 1,1 )*(thf(lI)-thO( 1))/(tfA2*( 1/4-i /2*alfa+I i/I0*alfa A2));

% Near Minimum Time Reference Maneuver
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if (t'.=O & t<=dt);

elseif (b~dt & t<c=t1);

f = 1;

fff=(( 1/2) *tA 2-(1 /2)*t*dt+(3/20)*dtA2);

elseif (t~t1 & t<=t2);

f = 1 - 2*(((t-tl)/(2*dt))A2*(3-2*((t-tl)/(2*dt))));

ff = -(1 /2)*dt+tl +2*dt*(((t-t1 )/(2*dt))-2*((t-t1 )/(2*dt))A 3+...

((t-tl )/(2*dt))A4);

fff = ((23/2O)*alfa A 2(3/4)*alfa+( 1/8))*tfA2+(2*dt)A 2*..

+( 1/5)*((t-t1 )/(2*dt))A 5)+((1I/2)*tf-(3I2)*dt)*(t-t1);

elseif (t>t2 & t<=t3);

ff=-t+tl +t2-( 1/2)*dt+2*dt*(((t2-t1 )/(2*dt))-...

fff=(-(2 1/20)*alfa A2+( 1/4)*alfa+1 /8)*tfA2+...

(1 /2)*(tf-3 *dt)*(tat) (1 /2)*(t-( I /2)*tf-dt)A2;
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elseif (t>t3 & t<=tf);

f = -1 +(((t-t3)/(dt))A2*(3-2*((t-t3)/dt)));

ff=(( 1/2)*dt+dt*(-(t-t3 )Idt+((t-t3 )Idt)A 3-(1 /2)*((t-t3)/dt)A4));

fff=(-(1/2O)*alfaA2-(1/2)*alfa+1/4)*tfA2+( 1/2)*dt*(t-t3)+...

dtA2*(-( 1/2)*((t-t3)/dt)A2+( 1/4)*((t-t3)/dt)A4.( 1/1 O)*((t-t3)/dt)A 5);

elseif (t~tf);

f -O;

ff -O;

fff -O;

end

tbref(l1)=(umax( )IMIM(1 ,1))*fff~IthO( 1);

thref(2)=(umax(2)IMM(2,2))* fff+thO(2);

thref(3)=(umax(3)IMM(3 ,3))*fff+thO(3);

thdref(l1)--(umax(l1)JMM( 1,1))*ff;

thdref(2)=(umax(2)IMM(2,2))*ff;

thdref(3)=(umax(3)IMM(3 ,3))*ff;

thddref(l1)=umax(l1)*f/MM( 1,1);

thddref(2)=umax(2)* fIMM(2,2);

thddref(3)=umax(3)*f/MM(3,3);

[MM,GM] = mgm(thdref,thref);
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B = [1,-1,0;0,1,-1;0,0,1];

Uref = inv(B) * ( MM * thddref + GM');
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D. MISCELLANEOUS FUNCITONS

1. Equation Of Motion Coefficient Funciton

function [MM,GM] = mgm(th,thd);

% Constants

L(1) = 15*2.54/100;

L(2) = 17*2.54/100;

L(3) = 17*2.54/100;

L(4) = 20/100;

Lcm(1) = 0/100;

Lcm(2) = 36.45/100;

Lcm(3) = 34.9/100;

% Mass

m(1) = 54.69;

m(2) = 2.09364;

m(3) = 2.466;

m(4) = 10.667;

% Inertia

I(1) = 4.32132;

1(2) = 3.20338e-2;

1(3) = 5.38398e-2;

1(4) = 0.00912;
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% Subroutine To Calculate Mass and "0" Matrix

th2l. = th(2) - th(1);

th3l = th(3) - th(1);

th32 = th(3) - th(2);

% 'Mass'Matrix

MM(1, I) = 1(1 )+L(1 )A2*(m(2)+m(3))+L(4YA2*m(4);

MM( 1,2) = ((m(2)*L( 1)*Lcm(2))+(m(3)*L( I)*L(2)))*cos(th2 1);

MM( 1,3) = m(3)*L( 1)*Lcm(3)*cos(th3 1);

MM(2,1) = MM(1,2);

MM(2,2) = 1(2) + m(2) *Lcm(2)A2 + m(3) * L(2)A 2;

MM(2,3) = m(3) * L(2) *Lcm(3) * cos(th32);

MM(3,1) = MM(1,3);

MM(3,2) = MM(2,3);

MM(3,3) = 1(3) + m(3) * 1m(3)A2;

% '0' Matrix

ci22 = ((m(2)*L( 1)*L~cm(2))+(m(3)*L(1 )*L(2)))*sin(th2l);

c133 = m(3)*L(1)*Lcm(3)*sin(th3l);

c21 1 = - ((m(2)*L( 1)*JJcm(2))+(m(3)*L( 1)*L(2)))*sin(ji2 1);

c233 = m(3)*L(2)*Lcm(3)*sin(th32);
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c311 = - m(3)*L(1)*Lcm(3)*sin(th3l);

c322 = - m(3)*L(2)*Lcm(3)*sin(th32);

ci =[0,0,0;...

0,c122,0;...

0,0,0133];

c2--[c21 1,0,0; ...

0,0,0;...

0,0,c233];

c3=[c3 11,0,0; ...

0,c322,0,...

0,0,0];

GM(1) =thd *cI *fldj';

GM(2) = did * c2 * dd';

GM(3) = did * c3 * dd';
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2. Inverse Kinematics Function

function theta=kink(x,yL1 ,L2)

% Subroutine To Determine Inverse Kinematic Solution

c 12=(x^2+y^2- 1 ̂ 2-L2^ 2 )/(2*L 1 *L2);

s I2=sqrt(1 -c I2A2);

theta 12=atan2(s 12,c 12);

niinv=inv([L I +L2*c 1 2,-L2* s 1 2;L2* s 12,L I +L2*c 121);

c=mlinv*[x;y];

theta(1)=atan2(c(2),c(1));

theta(2)=theta(1 )+theta] 2;

94



APPENDIX D

A. LINEAR CONSTANT GAIN FEEDBACK CONTROLLER
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Figure D.1 Linear Constant Gain Feedback Joint Position Time History With
Gp=O.1 And Gv=0.2
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Figure D.2 Linear Constant Gain Feedback Joint Velocity Time History
With Gp=O.1 And Gv=0.2
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Figure D.3 Linear Constant Gain Feedback Torque Time History With
Gp-O.1 And Gv=0.2
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Figure D.4 Linear Constant Gain Feedback Momentum Wheel Speed Time
History With Gp=O.1 And Gv=0.2
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B. POLYNOMIAL REFERENCE TRACKING CONTROLLER

70

60

,50 _

a40

.! In 30 
M-°° ain Body Angular

a.1

-20 0.5 125.5

Time (sec)

Figure D.5 Polynomial Reference Tracking Controller Joint Position Time
History With Gp=1 and Gv5 And Maneuver Time Of 5 Seconds
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Figure D.6 Polynomial Reference Tracking Controller Joint Velociy Time
History With Gp=1 and Gv=5 And Maneuver Time Of 5 Seconds

100



0.2

0.20 .05i 
o q

0.15
S.....Link 2 Torque

S0.05.. ."

S-0.05 "" -..

-0.15

-0.2_ _

-0.25
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (Sec)

Figure D.7 Polynomial Reference Tracking Controller Torque Time History
With Gp=l and Gv=5 And Maneuver Time Of 5 Seconds
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Figure D.8 Polynomial Reference Tracking Controller Momentum Wheel
Speed Time History With Gp=1 and Gv=5 And Maneuver Time Of 5 Seconds
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C. NEAR-MINIMUM-TIME REFERENCE TRACKING.CONTROLLER
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Figure D.9 Near-Minimum Time Tracking Controller Joint Position Time
History With Gp=l, Gv=5, Maneuver Time Of 5 Seconds, And a = 0.25
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Figure D.10 Near-Minimum Time Tracking Controller Joint Velocity Time
History With Gp=l, Gv=5, Maneuver Time Of 5 Seconds, And a = 0.25
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Figure D.11 Near-Minimum Time Tracking Controller Torque Time History
With Gp-l-, Gv=5, Maneuver Time Of 5 Seconds, And a = 0.25
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Figure D.12 Near-Minimum Time Tracking Controller Wheel Speed Time
History With Gp=1-, Gv=5, Maneuver Time Of 5 Seconds, And x = 0.25
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Figure D.14 Near-Minimum Time Tracking Controller Joint Velocity Time
History With Gp=1, Gv=5, Maneuver Time Of 5 Seconds, And a = 0.1
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